

S&T Benchmarking: 2001 Innovation Scoreboard

Hannes Leo WIFO

Content of the Presentation

- Objectives of the Scoreboard
- Indicators of the Innovation Scoreboard
 - Sources and Availability
- Summary Innovation Indicator
 - Methodology
- Results
- Comments

Objectives of the Scoreboard

- Outcome of the Lisbon European
 Council in 2000 and the Communication
 "Innovation in a knowledge-driven economy"
- Complement of the "structural indicators"
- Scoreboard should "zoom" into the area of innovation policy

Indicators in the Innovation Scoreboard

- 17 indicators on
 - Human resources
 - Creation of new knowledge
 - Transmission and application of new knowledge
 - Innovation finance, output and markets
- The scoreboard distinguishes between the trend (change) and the level of each indicator

Indicators: Human Resources

- S&E graduates / 20 29 years
- Population with tertiary education
- Participation in life-long learning
- Employed in med/high-tech manufacturing
- Employed in high-tech services

Indicators: Creation of New Knowledge

- Public R&D / GDP
- Business R&D / GDP
- High-tech EPO patents / population
- High-tech USPTO patents / population

Indicators: Transmission and Application of New Knowledge

- SMEs innovating in-house
- SMEs innovation co-operation
- Innovation expenditure/total sales

Indicators: Innovation Finance, Output and Markets

- High-tech venture capital / GDP
- New capital raised / GDP
- Sales of new-to-market products
- Home internet access
- ICT markets / GDP
- High tech value added in manuf.

ANNEX 1 - OVERVIEW TABLES

Table	e A: European Innovation Scoreboard (indicators, sources and years) ¹					
Nº	Short definition of indicator					
1.	Human resources					
1.1	New S&E graduates (‰ of 20 - 29 years age class)	1999				
1.2	Population with tertiary education (% of 25 – 64 years age classes)	2000				
1.3	Participation in life-long learning (% of 25 – 64 years age classes)	2000				
1.4	Employment in medium-high and hi-tech ³ manufacturing (% of total workforce)	1999				
1.5	Employment in high-tech ⁴ services (% of total workforce)	1999				
2.	Knowledge creation	•				
2.1	Public R&D expenditures (GOVERD + HERD) (% of GDP)	1999				
2.2	Business expenditures on R&D (BERD) (% of GDP)	1999				
2.3a	EPO high tech patent applications (per million population)	1999				
2.3b	USPTO high tech patent applications (per million population)	1998				
3.	Transmission and application of knowledge					
3.1	SMEs innovating in-house (% of manufacturing SMEs)	1996				
3.2	SMEs involved in innovation co-operation	1996				
3.3	Innovation expenditures (% of all turnover in manufacturing)	1996				
4.	Innovation finance, output and markets					
4.1	High technology venture capital investment (% of GDP)	2000				
4.2	Capital raised on parallel markets plus by new firms on main markets as a % of GDP	1999				
4.3	'New to market' products (% of sales by manufacturing firms)	1996				
4.4	Home internet access (% of all households)	2000				
4.5	Share of ICT markets as a percent of GDP	2000				
4.6	Share of manufacturing value-added in high-tech sectors	1997				

Construction of Summary Indicator

- Each indicator separates countries which are 20% above, at about, or 20% below EU average
- Each country scores for each indicators where it is above or below average
- The sum of scores is between +10 (i.e. all indicators above average) and -10 (i.e. all indicators below average)

Results: Summary Indicator

Results: Country Trends

Results: Overall Country Scoring

Fig. 1 Overall country trends by innovation index

Country	Average change ¹	Major trends			
Greece	52.9 %	Increasing public R&D and ICT investment; declining business R&D			
Spain	46.8 %	Increasing business R&D and USPTO patenting			
Luxembourg	45.8 %	Rapid increase of employment in high tech services.			
Ireland	41.9 %	Increased high-tech service employment, EPO patenting, high-tech value-added, declining public R&D			
Finland	39.2 %	Surging ahead on many indicators: tertiary education share, public and business R&D, USPTO patenting, high-tech value added			
Denmark	37.2 %	Increase in USPTO patents; decline of educated workforce			
Belgium	32.6 %	Increase in USPTO patents			
Sweden	30.5 %	Leading Member State; increased high-tech value added in manufacturi otherwise no major changes			
EU mean ²	30.5 %	-			
Italy	28.0 %	Lowest increase in EPO high-tech patents; increase in ICT investment.			
Austria	26.5 %	Catching up on tertiary education share, but few other signs of a major improvement.			
United Kingdom	24.6 %	Declining public and business R&D			
Netherlands	17.5 %	Declining share of high-tech value-added in manufacturing			
France	14.0 %	Declining business R&D			
Germany	11.5 %	Declining share of high-tech value-added in manufacturing			
Portugal	8.6 %	Increase in R&D, limited improvement of trend indicators			

- 1: Average percentage change in the indicators for which trend data are available.
- 2: The EU country-level mean (see footnote 9) is used for all trend analyses.

Austrian Scoring in the Scoreboard

Indicator	Level	Trend
S & E grads/20-29 pop		No Trend
Pop with 3 rd education		
Life-long learning		
Empl.h-tech manuf		
Empl.h-tech services		
Public exp. R & D / G D P		N o D A T A
BERD / GDP		N o D A T A
EPO h-tech pats /pop		?
USPTO h-tech pats /pop		?
SM Esinnovin-house		No Trend
SM Esinnov co-op		No Trend
Innov exp /total sales		No Trend
V ent capital / G D P		
New capital / GDP		No Trend
N ew -to -m arkt products		No Trend
H om e internet access		No Trend
ICT markets / GDP		
H -tech value added		No Trend

Problems with Innovation Scoreboard Indicators

- What is a benchmarking system?
 - Model or collection of indicator?
 - What is the structure and relationship within the selected indicators?
 - Are indicators correlated?

Korrelationen											
	S&Egrads	3rdedu		Lifell		h-t-man		h-t-serv		PubR&D	
S&Egrads	1,00										
3rdedu	0,27	1,00									
Lifell	0,07	0,71	*	1,00							-
h-t-man	0,37	0,35		0,47		1,00					
h-t-serv	0,37	0,77	*	0,69	*	0,35		1,00			
PubR&D	0,09	0,49	*	0,57	*	0,29		0,60	*	1,00	
BERD	0,34	0,82	*	0,57	*	0,62	*	0,78	*	0,68	*
EPO	0,20	0,80	*	0,67	*	0,46		0,74	*	0,84	*
USPTO h-tech	0,17	0,86	*	0,79	*	0,48		0,77	*	0,75	*
SMEinno	-0,10	0,15		0,47		0,49		0,40		0,23	
SMEco-op	0,30	0,74	*	0,72	*	0,41		0,87	*	0,52	*
innovexp	0,21	0,54	*	0,61	*	0,45		0,78	*	0,84	*
ventcap	0,42	0,79	*	0,69	*	0,55	*	0,74	*	0,58	*
newcap	-0,17	0,19		-0,09		-0,44		-0,09		-0,09	
new-to-mar	0,21	-0,33		-0,56	*	0,01		-0,25		-0,23	
internet	-0,07	0,61	*	0,85	*	0,18		0,78	*	0,62	*
ICT	0,01	0,01		0,29		-0,27		0,19		0,35	
h-t-va	0,44	0,62	*	0,44		0,20		0,77	*	0,04	
SI	0,42	0,89	*	0,83	*	0,53	*	0,92	*	0,64	*
Achg	0,05	0,09		-0,10		-0,33		0,07		-0,32	

Problems with Innovation Scoreboard Indicators

- Are indicators relevant for policy?
 - time period to make an impact
 - impact from other developments (i.e. business cycle, input-output indicators)
 - What is the contribution of the indicator to the overall goals of economic policy?
- Are all indicators of the same importance?
- How volatile are indicators?

Conclusion

- Benchmarking systems should measure relevant properties of innovation systems which relate to well defined output variables
- The relationship between input and output variables is unclear
- The overall results are influenced by data availability and methodological issues (VC)
- The Innovation scoreboard resembles a collection of indicators which try to measure different dimension of the innovation system

Conclusions for Austria

- The result are biased by data availability
- The recommendation are either very general or unfounded
- Resources should be devoted to outline the structure of the benchmarking system so that it more resembles an economic model